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Abstract: This paper reviews task scheduling frameworks, methods, and evaluation metrics of central processing unit-graphics processing 
unit (CPU-GPU) heterogeneous clusters. Task scheduling of CPU-GPU heterogeneous clusters can be carried out on the system level, node⁃
level, and device level. Most task-scheduling technologies are heuristic based on the experts’ experience, while some technologies are based 
on statistic methods using machine learning, deep learning, or reinforcement learning. Many metrics have been adopted to evaluate and com⁃
pare different task scheduling technologies that try to optimize different goals of task scheduling. Although statistic task scheduling has 
reached fewer research achievements than heuristic task scheduling, the statistic task scheduling still has significant research potential.
Keywords: CPU-GPU heterogeneous cluster; task scheduling; heuristic task scheduling; statistic task scheduling; parallelization

Citation (Format 1): ZHOU Y H, ZENG W, ZHENG Q F, et al. A survey on task scheduling of CPU-GPU heterogeneous cluster [J]. ZTE Com⁃
munications, 2024, 22(3): 83–90. DOI: 10.12142/ZTECOM.202403010
Citation (Format 2): Y. H. Zhou, W. Zeng, Q. F. Zheng, et al., “A survey on task scheduling of CPU-GPU heterogeneous cluster,” ZTE Commu⁃
nications, vol. 22, no. 3, pp. 83–90, Sept. 2024. doi: 10.12142/ZTECOM.202403010.

1 Introduction

Cloud computing platforms have become fundamental 
information infrastructures in modern society[1]. A 
large number of computing servers in one cluster are 
connected by high-speed communication networks 

and provide high concurrency for users’ remote accesses. cen⁃
tral processing unit (CPU) and graphics processing unit (GPU) 
servers are dominantly used as core computing resources and 
virtualized into different computing resource pools to cater to 
various services. Computing tasks are calculated in the serv⁃
ers and provide various services at the Infrastructure as a Ser⁃
vice (IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS) levels[2]. Tasks running on suitable servers can 
save cost and finish computing as soon as possible. Such task 
assignment is an important technology called task schedul⁃
ing[3]. Bad task scheduling will waste computing resources, 
cost more, and lead to a bad user experience[4].

CPU servers are generally dominant in cloud platforms due 

to their universal computing architecture. However, with the 
rapid development of artificial intelligence (AI) technologies, 
the GPU has been more and more widely used in heteroge⁃
neous clusters. Cluster heterogeneity is heterogeneous among 
computing servers, and between CPU and GPU within a 
server. In most cases, one cluster may have both the CPU 
server and the GPU server simultaneously. Consequently, task 
scheduling in CPU-GPU heterogeneous clusters is more com⁃
plex and different[5].

Good task scheduling should have the following characteristics:
• Maximizing clusters’ system goals, e. g. throughput, en⁃

ergy cost, Quality of Service (QoS), etc;
• Balancing networks and storage with computing, and pre⁃

venting network jams, long-time idleness, hot end, and so on;
• Assigning tasks to the best-matched CPUs or GPUs as far 

as possible.
2 Framework of Task Scheduling for Clusters

Task scheduling in cloud environments is a hot issue be⁃
cause of the prevalence of cloud computing. ARUNARANI et 
al. presented a comprehensive literature survey of task sched⁃
uling strategies and the associated metrics suitable for cloud This work is supported by ZTE‑University‑Institute Fund Project under 

Grant No. IA20230629009.
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computing environments[3], in which the methods, applica⁃
tions, and parameter-based measures utilized for task schedul⁃
ing are discussed. QoS, ant colony optimization, particle 
swarm optimization, genetic algorithms, multi-processors, 
fuzzy algorithms, clustering, deadline constraints, and cost-
based algorithms were summarized and analyzed. As men⁃
tioned by the survey, from 2003 to 2018, a large number of 
studies on different techniques to solve scheduling problems 
were conducted. YANG et al. reviewed task scheduling algo⁃
rithms for cloud computing[6]. They divided scheduling algo⁃
rithms into single-objective optimization algorithms and multi-
objective task scheduling algorithms. They also analyzed the 
representative algorithms of each method, and compared and 
summarized the advantages and disadvantages of different al⁃
gorithms. The authors in Ref. [7] categorized scheduling meth⁃
ods into traditional scheduling strategies, heuristic-based in⁃
telligent algorithms, emerging swarm intelligence algorithms, 
and hybrid algorithms, which accomplished a review of nature-
inspired optimization techniques for scheduling tasks in cloud 
computing. SINGH et al. reviewed the meta-heuristics tech⁃
niques for scheduling tasks in cloud computing[4], and pre⁃
sented the taxonomy and comparative review of these algo⁃
rithms. Methodical analysis was presented based on swarm in⁃
telligence and bio-inspired techniques[4]. Since multi-
objective optimization can deal with multiple conflicting 
goals, HOSSEINZADEH et al. presented a comprehensive sur⁃
vey and overview of the multi-objective scheduling ap⁃
proaches designed for various cloud computing environ⁃
ments[8]. They classified the scheduling schemes into different 
types such as reducing execution cost, reducing makespan, re⁃

ducing SLA violation, and meeting deadlines, regarding ap⁃
plied multi-objective optimization algorithms. PRITY et al. 
provided a review of nature-inspired optimization techniques 
for scheduling tasks[9]. A novel classification taxonomy and 
comparative review of these techniques were presented. 
JAWADE et al. gave a compact analytical survey on task 
scheduling[10], which vividly explained different approaches 
utilized for task scheduling in diverse works.

Since AI has played an increasingly significant role, clus⁃
ters with GPU become common and important. Amazon AWS, 
Microsoft Azure, Ali Cloud, Huawei Cloud, Baidu Cloud, and 
so forth, provide GPU computing services in their clouds. The 
hardware in such clouds is the CPU-GPU cluster. Tasks and 
devices in the CPU-GPU cluster are heterogeneous. 
PRADHAN et al. compared and described various task sched⁃
uling methods in heterogeneous cloud environments[5]. They 
categorized scheduling algorithms into heuristics and hybrid 
methods. Heuristics algorithms were categorized into static 
and dynamic scheduling. Dynamic scheduling was then cat⁃
egorized into online and batch modes.

In general, task scheduling has two stages. System-level 
task scheduling is carried out in the first stage, whose goal is 
to optimize system performance, such as load balance, total 
computing efficiency, power consumption, system response, 
and temperature constraints. After tasks are assigned to 
nodes, task scheduling is carried out within the nodes in the 
second stage, whose goal is to optimize computing node per⁃
formance, such as makespan, node computing efficiency, and 
node temperature. Fig. 1 shows the two-stage task scheduling 
framework.

▲Figure 1. Two-stage task scheduling framework
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3 Task Scheduling of CPU-GPU Heteroge⁃
neous Cluster
Compared with CPU clusters, the CPU-GPU cluster shows 

more heterogeneity in terms of architecture and task types. 
The task scheduling framework for CPU-GPU heterogeneous 
cluster is shown in Fig. 2.

In node-level task scheduling, tasks could be classified as 
CPU tasks and GPU tasks depending on the type of device 
used. In node inner task scheduling, GPU tasks can be as⁃
signed to different GPU devices since there are multiple 
GPUs in the node. Based on different strategies and method⁃
ologies, the task scheduling for the CPU-GPU heterogeneous 
clusters still can follow heuristic methods and statistic meth⁃
ods partition.
3.1 Heuristic Methods

Heuristic task scheduling relies on human-designed models 
to strategies and performs task assignments[11–31]. Task assign⁃
ments follow human-defined rules and are implemented by 
mathematical models and algorithms.

Early task scheduling was still based on the Hadoop frame⁃
work[11]. The hybrid map method minimized the overall Ma⁃
pReduce job execution time by using profiles collected from 
dynamic monitoring of the map task behavior.

Later, energy consumption was taken into consideration in 
task scheduling that focused on system-level energy optimiza⁃
tion[12]. The coarse-grained and fine-grained strategies of the 
Waterfall model were migrated into the scheme. The energy ef⁃
ficiency problem was translated into static power consumption 
loss and resource utilization problems. According to the het⁃
erogeneity of the tasks and task types, buddy allocation was 
proposed to improve energy efficiency. HUO et al. abstracted 
computing resources into many identical virtual CPUs and for⁃
mulated the scheduling problem into an optimization problem 
with integer variables and nonlinear constraints[12]. The energy 

consumption minimization problem was formulated as an inte⁃
ger nonlinear programming problem, necessitating the determi⁃
nation of both a task assignment plan and a tailored resource 
allocation plan.

Similar to energy consumption, temperature becomes an op⁃
timized goal of task scheduling, especially for big clusters. 
Temperature, reliability, and computing performance were 
taken into account to reduce node performance differences 
and improve throughput per unit time in clusters[13]. Tempera⁃
ture heat islands caused by slow nodes could be prevented by 
optimizing scheduling. CAO and WANG proposed a novel 
task-scheduling model for GPU clusters with temperature limi⁃
tations[14]. GPU and temperature were both considered during 
task scheduling. A state matrix was designed to monitor the 
GPU cluster and provide status information for the scheduler. 
Compared with the benchmark scheduling model, the loss of 
scheduling performance is more acceptable.

In order to deal with the problem of unbalanced workload, 
task classification and packing were both used to match CPU 
and GPU loads[15]. Tasks were classified into six classes ac⁃
cording to parallelism degrees and workloads, and then as⁃
signed to minimize the execution time[16]. The approach is 
forming a good match between the task distribution and the ar⁃
chitecture of the heterogeneous cluster through the task classi⁃
fications and combinations. Besides task classification, CHEN 
et al. proposed a multi-granularity partition approach to syn⁃
chronizing data flow graphs and task partition on CPU and 
GPU tasks[17]. This method can satisfy load balancing and im⁃
prove the utilization rate of the cluster. CI et al. designed an 
adaptive scheduling strategy to alleviate imbalance and under-
utilization[18], which logically treated all GPUs in the cluster as 
a whole. Every cluster node maintains a local information 
table of all GPUs. Once a GPU call request is received, a node 
will select a GPU to run the task adaptively based on this 
table. This strategy could significantly improve the GPU utili⁃
zation rate and reduce mean waiting time.

Some task scheduling strategies focus on makespan optimi⁃
zation. This can maximize the parallel degree between CPUs 
and GPUs. Ref. [19] presented a scheduling algorithm using a 
generic methodology. The main idea of the approach is to de⁃
termine an adequate partition of the set of tasks on the CPUs 
and the GPUs using a dual approximation scheme. ZHU et al. 
separated data into different data splits first, and then the 
scheduler assigned tasks to the CPU or GPU according to 
their computing resources[20]. In this case, the data size be⁃
comes a measure of processing time.

Different types of tasks may be dominant in different clus⁃
ters, and task-type-oriented scheduling strategies are then de⁃
signed. A parallel version of the min-min heuristic method, 
which is an advanced parallel cellular genetic algorithm 
(CGA), was proposed for large instances of tasks in a clus⁃
ter[21]. For short tasks, SHAO et al. implemented a container-
based batch computing system, which accepted and executed ▲ Figure 2. Task scheduling framework for CPU-GPU heterogeneous 

cluster
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users’ jobs through container images and specified configura⁃
tions[22]. A shortest-job-first-based scheduling policy was used 
to ensure the priority of the short tasks and to prevent long 
tasks from starving. For gaming tasks, ZHANG et al. proposed 
a fine-grained scheduling framework that decomposed game 
workloads into small and independent render tasks and dis⁃
patched the small tasks to different machines[23]. The schedul⁃
ing objective was to maximize a utility function. If all re⁃
sources are fully used by games, the utility function achieves 
its maximum value. The proposed approach requires only 
26.4% of the servers compared with packing algorithms. Since 
task scheduling strategies based on artificial intelligence be⁃
come more and more prevalent in clusters, efficient machine 
learning task scheduling has attracted increasing research in⁃
terests[24–28]. CHEN et al. focused on convolutional neural net⁃
works (CNN) -based task scheduling[24]. The scheduling strat⁃
egy leverages an analytical prediction model to optimize the al⁃
location of computing resources for impending tasks, thereby 
enhancing system efficiency and prioritizing user satisfaction. 
To improve performance and reduce energy consumption, 
CHEN et al. proposed a prediction method to predict the 
completion time and energy consumption of deep training 
tasks first, and then used the GPU allocation strategy algo⁃
rithm that depended on the prediction of completion time and 
energy consumption to assign tasks[25]. For more time-
consuming training tasks, HAN et al. proposed a method to 
eliminate network contention by jointly optimizing network to⁃
pology and communication patterns in distributed training[26]. 
CHEN et al. proposed a training-inference joint scheduling 
framework, called DeepBoot, to support training tasks and uti⁃
lize the idle GPUs in the inference cluster[27]. DeepBoot could 
overcome the unbalanced GPU utilization stemming from the 
periodic difference in training and inference workload. CHEN 
et al. proposed a QoS-aware scheduling framework for a deep 
learning R&D platform[28]. The framework provides lightweight 
offline profiling and online dynamic scheduling on GPU clus⁃
ters. Using the lightweight offline profiler, the framework 
could provide a prediction model according to the domain-
specific information of deep learning tasks derived from a com⁃
prehensive characterization.

Some research focuses on the methodology of scheduling al⁃
gorithms[29–31]. ZHANG and WU presented the weighted 
system-level scheduling algorithm (WSLSA) which involved 
the weights of the processor[29]. Due to the doubly linked list 
data structure for system-level tasks, the algorithm could as⁃
sign and remove a task in a single direction (denoted by 
WSLSA-S) from the task list or it could also assign and re⁃
move a task in both directions (denoted by WSLSA-B) from 
the task list. ITURRIAGA et al. presented a parallel imple⁃
mentation on CPU/GPU of two variants of a stochastic local 
search method to efficiently solve the scheduling problem in 
heterogeneous computing systems[30]. Both methods are based 
on a set of simple operators to keep the computational com⁃

plexity as low as possible. A two-level dynamic scheduling al⁃
gorithm of CPU and GPU cooperative computing in heteroge⁃
neous clusters was proposed[31]. The algorithm could dynami⁃
cally distribute data according to each node’s computing ca⁃
pability and schedule tasks dynamically between the CPU and 
GPU in the node.
3.2 Statistic Methods

Different from heuristic task scheduling, statistic methods 
learn scheduling strategies from clusters of system data. The 
system data include CPU utilization information, GPU utiliza⁃
tion information, host memory utilization information, GPU 
memory utilization information, node uplink traffic rate, node 
downlink traffic rate, global load throughput of GPU, global 
store throughput of GPU, etc. With the burgeoning develop⁃
ment of AI, deep reinforcement learning and deep neural net⁃
works are employed in tasking scheduling[32–35].

By using the deep Q-network, the two-stage scheduling 
model was adopted to learn to perform the current optimal 
scheduling actions online according to the runtime status of 
cluster environments, the characteristics of video tasks, and 
the dependencies between video tasks[32]. The interference-
aware workload parallelization (IAWP) method assigns sub⁃
tasks with dependencies to the appropriate computing units, 
taking the interference of subtasks on the GPU by using neu⁃
ral collaborative filtering into account[33]. To make the learning 
of neural networks more efficient, pre-training is adopted in 
the two-stage scheduler. The transfer learning technology is 
used to efficiently rebuild the task scheduling model referring 
to the existing model.

Since prediction-based schedulers are limited in terms of 
their prediction accuracy and offline-profiling overhead, the Q-
learning framework was designed to model the R&D scenarios 
and was proposed to build a series of implementations includ⁃
ing state space, action space, reward function, and update 
scheme for task scheduling[34]. The learning agent could learn 
from the feedback on task performance independently and 
continuously to adjust online task scheduling decisions. The 
Q-learning-based scheduler significantly improves the task av⁃
erage normalized throughput and makespan. Moreover, the 
proposed scheduler is more suitable for long-term deep-
learning R&D scenarios.

The deep network can be used to produce task scheduling 
strategy candidates first[35]. A set of feasible solutions is then 
generated through cross-variance and other operations. The 
optimal solutions are screened out and stored in the empirical 
buffer area. Finally, the neural network parameters are opti⁃
mized through the empirical buffer samples.

Compared with heuristic task scheduling methods, statistic 
methods have demonstrated fewer achievements. This is be⁃
cause task scheduling is dynamic and non-deterministic poly⁃
nomial (NP)-hard. It is not easy to obtain a suitable deep net⁃
work to efficiently describe all behaviors of task scheduling. 
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Along with the evolution of machine learning technologies, 
more and more algorithms will emerge and provide better per⁃
formance.
4 Task Scheduling of GPU

Modern GPU computing allows application programmers to 
exploit parallelism using new parallel programming languages 
such as CUDA and OpenCL and a growing set of familiar pro⁃
gramming tools, leveraging the substantial investment in paral⁃
lelism that high-resolution real-time graphics require and AI 
applications[36]. Different from the CPU, the GPU cannot be 
partitioned into arbitrary virtual GPUs with cores. GPUs also 
cannot compute without cooperation with the CPU. Therefore, 
GPUs show different characteristics of computing. GPUs offer 
the capability to handle multiple tasks at the process level, 
that is, multiple processes can run on one GPU. However, fre⁃
quent process switching may destroy the hardware pipeline of 
GPUs. Usually, a server may have several GPUs. Different 
GPUs are treated as different devices although such GPUs are 
connected by high-speed interconnection networks. As a re⁃
sult, tasks can be scheduled among GPUs and processed 
within a GPU server, which is device-level task scheduling. 
The task scheduling framework of GPU is shown in Fig. 3.

Most research focuses on task scheduling within GPU[37–45]. 
The goal of task scheduling within GPU is to exploit the 
throughput of the GPU kernel and give the best separation of 
SM or threads. In the early stage, AUGONNET et al. pre⁃
sented StarPU, a runtime system that efficiently exploited het⁃
erogeneous multicore architectures[37]. StarPU provides a uni⁃
form execution model and a high-level framework to design 
scheduling policies. StarPU permits dynamically selecting the 

strategies at runtime, thus letting the programmer try and 
choose the most efficient strategy. This makes it possible to 
benefit the scheduling without setting restrictions or mak⁃
ing excessive assumptions. Later, ZHONG and HE pro⁃
posed Kernelet, a runtime system that improved the 
throughput of concurrent kernel executions on the GPU[38]. 
Kernelet embraces transparent memory management, PCIe 
data transfer techniques, and dynamic slicing and schedul⁃
ing techniques for kernel executions. A novel Markov chain-
based performance model to guide the scheduling decision 
was proposed in Kernelet. Recently, ZOU et al. proposed 
RTGPU that combined fine-grain GPU partitioning on the 
system side with a novel scheduling algorithm on the theory 
side[39]. RTGPU leverages a precise timing model of the 
GPU applications with the persistent threads technique and 
improves fine-grained utilization through interleaved execu⁃
tion. The RTGPU real-time scheduling algorithm can pro⁃
vide real-time guarantees of meeting deadlines for GPU 
tasks with better scheduling ability.

Besides the scheduling framework, some research focuses 
on scheduling strategies[40–41]. LOPEZ-ALBELDA et al. em⁃
ployed a scheduling theory to build a model that took into ac⁃
count the device capabilities, workload characteristics, con⁃
straints, and objective functions[40]. The heuristic called 
NEH-GPU, which combines an existing heuristic with a GPU 
task execution model, has been developed. HUANG et al. 
proposed a dynamic GPU task balance scheduling called the 
coefficient of balance and equipment history ratio value (CB-
HRV) task scheduling[41], which was developed to reduce sys⁃
tem energy consumption during task execution by allocating 
tasks based on workload balance, thereby improving GPU en⁃

▲Figure 3. Task scheduling framework of GPU

GPU: graphics processing unit      SM: streaming multi-processors

… …

GPU task scheduler

GPU 0
SM/Thread scheduler

SM 1 SM 2 SM n…

Interconnection network

Interconnection network within node (PCIE3. 0/PCIE4. 0/NVLink/NVSwitch…)

GPU 2
SM/Thread scheduler

SM 1 SM 2 SM n…

Interconnection network

GPU n
SM/Thread scheduler

SM 1 SM 2 SM n…

Interconnection network

87



ZTE COMMUNICATIONS
September 2024 Vol. 22 No. 3

ZHOU Yiheng, ZENG Wei, ZHENG Qingfang, LIU Zhilong, CHEN Jianping 

Review   A Survey on Task Scheduling of CPU-GPU Heterogeneous Cluster

ergy usage. The CB-HRV algorithm is more balanced, and it 
allows the computing device to be utilized more reasonably 
and efficiently.

For special types of tasks, an efficient task scheduling 
frame was designed[42–44]. LI et al. proposed a two-level sched⁃
uling strategy to distribute irregular tasks and enable resource 
sharing on GPUs, by managing tasks and threads hierarchi⁃
cally[42]. The framework manages both tasks and threads in the 
two levels to allow for helpful resource sharing. KWON et al. 
proposed Nimble, a deep-learning execution engine that runs 
GPU tasks in parallel with minimal scheduling overhead[43]. 
Nimble introduces a technique called ahead-of-time (AoT) 
scheduling, which pre-runs the given neural network once ac⁃
cording to the generated stream mapping and records all the 
GPU tasks as an execution trace. AoT scheduling also inter⁃
cepts memory allocation/free requests from the base frame⁃
work and reserves the GPU memory allocated in the pre-run. 
At the end of the AoT scheduling, Nimble packs the execution 
trace and reserves the memory into a task schedule. CHEN et 
al. presented Atos, a task-parallel GPU dynamic scheduling 
framework that was especially targeted at dynamic irregular 
applications[44]. Atos exposes additional concurrency by sup⁃
porting task-parallel formulations of applications with relaxed 
dependencies, achieving higher GPU utilization. Atos also of⁃
fers implicit task-parallel load balancing in addition to data-
parallel load balancing, providing users the flexibility to bal⁃
ance between them to achieve optimal performance.

However, there is a relative scarcity of research on task 
scheduling for muti-GPU systems. TANG et al. proposed 
AEML, an acceleration engine for multi-GPU load-balancing 
in distributed heterogeneous environments[45]. AEML could ef⁃
fectively integrate GPUs into the distributed processing frame⁃
work and achieve good load balance among multiple heteroge⁃
neous GPUs. To achieve the best load-balancing among mul⁃
tiple heterogeneous GPUs, the AEML model utilizes four tech⁃
niques: a fine-grained task mapping mechanism, a device re⁃
source unified management scheme, a novel resource-aware 
GPU task scheduling strategy, and a feedback-based stream 
adjustment scheme.
5 Evaluation

The goal of task scheduling is to exploit all potential paral⁃
lelism of heterogeneous clusters composed of multi-CPUs and 
multi-GPUs. Some metrics are adopted to evaluate and com⁃
pare different methods, such as makespan, load balance, re⁃
source utilization, energy, speedup and QoS[46–47]. The sched⁃
uling methods will optimize several metrics simultaneously. 
We summarize the motioned scheduling technologies in 
Table 1.

From Table 1, it can be clearly seen that most algorithms fo⁃
cus on makespan and resource utilization. This is because that 
makespan is very important for cluster users’ feeling. Re⁃
source utilization optimization can improve cluster system effi⁃

▼Table 1. Summary of scheduling technologies based on evaluation metrics

Task Scheduling 
Technology

Hybrid map[11]

Energy efficient task 
scheduling[12]

Energy-minimized 
scheduling[13]

Task scheduling with 
temperature 

constraint[14–15]

PTA&WSLSA[16]

Multi-granularity parti⁃
tion[17]

Adaptive and transparent 
task scheduling[18]

Dual approximation 
technique[19]

Data partition[20]

Large instance 
sheduling[21]

Short task scheduling[22]

Fine-grained 
scheduling[23]

CNN-based task 
scheduling[24]

GAS[25]

Isolated scheduling[26]

DeepBoot[27]

QoS guarantee 
scheduling[28]

Greedy heuristics[29]

Local serach[30]

CPU and GPU 
cooperative scheduling[31]

Learning driven schedul⁃
ing[32–33]

Q-learning[34]

Dynamic priority task 
scheduling[35]

StarPU[37]

Kernelet[38]

RTGPU[39]

Heuristics for concurrent 
task scheduling[40]

Task balance 
scheduling[41]

Two-level task 
Scheduling[42]

Nimble[43]

Atos[44]

AEML[45]

Evaluation Metrics
Speed⁃

up
√

√

√

√

√
√
√

Energy

√

√

√

√

√

Load 
balance

√
√

√

√

√

Makes⁃
pan

√
√

√

√
√

√

√
√
√

√

Resource 
utilization

√

√

√
√

√
√

√

√
√
√
√

√

QoS

√
√

√

√

CNN: convolutional neural networkCPU: central processing unitGAS: GPU allocaion strategyGPU: graphics processing unit

PTA: packing task algorithmQoS: Quality of ServiceWSLSA: weighted system-level scheduling algorithm
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ciency, which is the main purpose of task scheduling technolo⁃
gies. Energy-based task scheduling is mainly designed for 
GPU clusters since GPUs are highly energy-consuming. Heu⁃
ristic methods are dominant since statistic-based approaches 
require running data from the real clusters which are hard to 
collect. However, learning-based scheduling can provide more 
intelligent scheduling strategies and will attract more attention 
in future research.
6 Conclusions

Task scheduling is a long-term hot research topic in compa⁃
nies with cloud computing and AI’s flourishing. Most task 
scheduling strategies are heuristic and based on experts’ ex⁃
perience. Statistic strategies have attracted researchers’ inter⁃
est recently. Different from task scheduling of CPU clusters, 
task scheduling of CPU-GPU clusters is more complex due to 
heterogeneous system composition. Task-oriented scheduling 
focuses on short tasks, gaming tasks, deep learning tasks, etc. 
This paper also reviews task scheduling strategies within 
GPU. This is because GPU has process-level parallel ability 
and incompatible tasks will decrease GPU’s workflow and 
parallelism.

This paper describes a task scheduling framework for CPU-
GPU heterogeneous clusters and a task scheduling framework 
for GPU servers with multiple GPUs. From the two frame⁃
works, we can clearly see that task scheduling can be sepa⁃
rated into the system level, the node level, and the device 
level. Although research achievements in statistic task sched⁃
uling are less than heuristic task scheduling, statistic task 
scheduling is still a highly potential technology.
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